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ABSTRACT 

axt., n\q A matrix method using f l e x i b i l i t y  influence coef f ic ien ts  w a s  
developed fo r  obtaining the free-free bending and tors ional  mode 
shapes, slopes of mode shapes, ana natural  frequencies of space 
vehicles.  
included. 

The e f f ec t s  of ro ta ry  i n e r t i a  and shear f l e x i b i l i t y  a r e  

The mode shapes and natural  frequencies were determined f o r  a 
typical  space vehicle  and compared with those obtained from a modified 
Stodola method. Twenty mass points were used for  the influence coef- 
3 i c i e n t  analysis  and 201 for  the Stodola method. 

This report  shows t ha t  the influence coef f ic ien t  method w i l l  
obtain sa t i s f ac to ry  mode shapes and frequencies i n  comparison t o  a 
Stodola method. 
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SUMMARY 

M o d e  shapes and natural  frequencies of a uniform and nonunifom 
beam obtained by a f l e x i b i l i t y  influence coef f ic ien t  method were compared 
with a modified Stodola method. 
influence coef f ic ien t  method, while 201 were used with the Stodola method 
f o r  the nonuniform beam analysis. 
mass points  w e r e  used, while 145 w e r e  used i n  the Stodola analysis.  
results indicate  that the f l e x i b i l i t y  influence coef f ic ien t  method yields  
reasonably accurate mode shapes and frequencies i n  bending and tors ion 
using only twenty mass points. Maximum var i a t ion  i n  frequencies between 
the two methods used was  only about 2 percent f o r  the nonuniform beam and 
3 percent f o r  the uniformbeam. Mode shapes compared very closely with 
the exception of the 4th modes of the free-free bending and tors ion  f o r  
the nonuniform beam. 

Twenty mass points  w e r e  used with the 

For the uniform beam, 10, 15, and 20 
The 

I. INTRODUCTION 

During the pas t  few years the v ibra t ion  of various s t ruc tures  
and t h e i r  components has become increasingly important t o  s c i e n t i f i c  
personnel i n  many f ie lds .  Prac t ica l ly  any s t ruc tu re  which is  subjected 
t o  shock or  repeated loads experiences vibrat ions.  These v ibra t ions  
result, inmany cases, i n  s t ruc tura l  fa t igue,  due t o  repeated s t r e s s  
reversals ,  o r  v io l en t  s t ruc tura l  f a i l u r e  due to  a resonant condition. 

In the space f i e ld ,  various problems a r i s e  i n  the design of con- 
t r o l  systems because of the e l a s t i c i t y  of the s t ructure .  Insulat ion 
of s ens i t i ve  instruments against shock and v ibra t ion  is  a problem which 
must be considered. Also, acoustical  problems a r i s e  due t o  the high 
energy level of the sound waves emitted by the rocketmotors .  
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This report  is concerned spec i f i ca l ly  with the v ib ra t ion  of non- 
uniform beams, a problem which i s  analogous t o  the s t r u c t u r a l  v ib ra t ion  
of a space vehicle airframe. 
coef f ic ien ts  to  determine the mode shapes, s lopes of mode shapes, and 
na tura l  frequencies, both tors iona l  and bending, fo r  a uniform and non- 
uniform single-beam s t ruc tu re  i s  presented. This ana lys i s  includes the 
e f f e c t s  of rotary i n e r t i a  and shear f l e x i b i l i t y .  

A matrix method using f l e x i b i l i t y  influence 

The author expresses h i s  appreciation t o  M r .  C. R. Wells of 
Chrysler Corporation Space Division fo r  the many helpful  suggestions 
i n  the preparation of t h i s  report .  

11. DESCRIPTION 

The to t a l  l i nea r  or  angular def lec t ion  of any point  on a beam can 
be expressed as  the sum of the def lec t ions  a t  t h a t  point  produced by 
the individual applied forces and torques. This i s  the pr inc ip le  of 
superposition which w i l l  be used i n  writ ing the def lect ions and slopes 
of a vibrat ing beam. The general equation for  the displacements o r  
ro t a t ions  of points on a beam can be wr i t ten  in  the following form: 

C i j  Qj  
( i  = 1, 2, 3 , .  . . n) 

j=1 

where qi's are  the generalized coordinates, def lec t ion  and ro t a t ion ,  
C i j ' s  are f l e x i b i l i t y  influence coef f ic ien ts ,  and Qj's a r e  generalized 
forces o r  torques. The f l e x i b i l i t y  coef f ic ien ts  can be determined by 
subdividing a beam in to  n par t s ,  assuming the mass of each element t o  
be concentrated a t  the center of the element, applying a u n i t  force and 
moment separately a t  each point ,  and then determining the def lec t ion  and 
slope a t  each point  on the beam f o r  each loading condition. 
coef f ic ien ts  of t h i s  type can be thought of a s  the reciprocal  of the 
spring constants fo r  each mass point. The generalized forces Q j  a r e  
the i n e r t i a  forces miYiu2 and the i n e r t i a  torques I i Y i W 2 .  

Influence 

There are  seven types of f l e x i b i l i t y  influence coef f ic ien ts  
associated with bending v ibra t ion  problems. Equations (2 ) ,  ( 3 ) ,  and 
(4) i l l u s t r a t e  t h e i r  re la t ionship  t o  the t o t a l  def lect ion,  slope,  and 
bending slope of a beam. 

From equations (1) and (2),  the  t o t a l  def lec t ion  and slope can be 
obtained for  the i t h  mass point  along a v ibra t ing  beam. 
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Equations (2) and (3) have 3 unknowns, YTi, Y i i ,  and Yki; therefore ,  
an equation f o r  Y & i  must be wr i t ten  before a so lu t ion  is possible. 

Two d i f f e r e n t  mass moments of i n e r t i a  are used i n  equations (2), 
,(3), and (4): IJi and IRi. 
the sec t ion  and IRi is the i n e r t i a  due t o  the  radius  or  diameter. I n  
equations (2), (3), and (4) one sees t h a t  IQi always occurs with Y;Ci, 
while IRi occurs with Yhi. 
element of beam r o t a t e s  under both bending and shear loads; therefore, 
I a i  is  always accompanied by Y h i  + Yhi or  Y*i. I n  the  other  case, the 
diameter or  rad ius  of an element ro t a t e s  only when subjected t o  a bending 
load. 
d i rec t ion ,  bu t  does not produce any r o t a t i o n  of the diameter of the 
element with respect t o  the ve r t i ca l ;  therefore, IRi is  associated only 
with Y h i .  

Ili is the  i n e r t i a  due t o  the  length of 

The reason fo r  t h i s  is that the  length of an 

A shearing load causes s l id ing  of adjacent planes i n  the  vertical 

Since the  center of grav i ty  of each element may not coincide with 
i ts  geometric center, it is  necessary t o  add addi t iona l  forces  and 
torques due t o  t h i s  unbalance as follows: 

I -  



4 

(1) A force: w2 m S .  Y i i  

(2) A moment: w2 m S .  yTi 

( 3 )  Another moment: 

i i  

i i  

w2 m S: yii .  i 

Equations (2), ( 3 ) ,  and ( 4 )  now read: 
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Equations (2 ' )y  (3') and (4') can be wri t ten i n  matrix form a s  follows: 

- r - - -  1----- - - -  

I I - 

I 

I 

I 

I O t  0 1  

Since f l e x i b i l i t y  influence coeff ic ients  a r e  more eas i ly  obtained 
fo r  a cant i lever  beam than beams with other end conditions, i t  w i l l  be 
assumed that the above coeff ic ients  have been determined f o r  t h i s  case. 

Equation (5) w i l l  .be wr i t ten  as 

and upon i t e r a t i o n  the mode shapes, slopes of mode shapes, slopes of 
the bending mode shape, and natural  bending frequencies a r e  obtained. 
To obtain the free-free frequencies, modes shapes, e tc . ,  the  clamped 
end of the beam must be allowed t o  t r ans l a t e  and r o t a t e  as  shown below. 

*Ti 
I 
I - -  

y T i  

'i i 

I 
I - -  
I 
I 
I 
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The cantilever def lect ions and slopes Y and Y.;Ci can now be 
wr i t ten  i n  terms of the new var iab les  Y i F ,  Y i F ,  T i  X i ,  eo, and Yo. 

yTi = yi - Y - xieo 
0 F 

- eo Y.ICi = Y; 

- eo YBi - Yki 

F 

I -  

F 

where Y 
Matrix equation (5) now reads 

is the def lect ion of the free-free beam and Y' is the slope. 
i F  iF  

/ 

'ieo Y i F  - Yo - 
I 
I 

Yi ,  - 8, 

I 
= w 2 [ d ]  

Writing equation (10) i n  three separate equations, 
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r 
where 1 ce 1, is  the f i r s t  par t i t ioned row of the influence coef f ic ien t  

the second row and the th i rd  row. The mass and matrix r c0 

1 
1. 

momRnt of i n e r t i a  matrix is C\mr\J. The unknowns Yi, Y;, and Y' are 
B i  

designated { u ] . 
Introducing the boundary conditions that the shear and bending 

moment are zero a t  the ends of the beam, we obtain 

where 

= Iei - mi S: . 

I n  matrix form, equations (12) and (13) read 

(13' ) * 



Solving equations ( l l a ) ,  ( l l b ) ,  and ( l l c )  f o r  YiF, Y i F ,  and Yi iF  
s u b s t i t u t i n g  i n  (12')  and (13 ' )  y i e l d s  the  following: 

and 

lmi  1 
+l 

and 

mi Si 

For s i m p l i f i c a t i o n ,  t he  fol lowing s u b s t i t u t i o n s  a re  made: 
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Equations (14) and (15) may be written with the above substitutions 
as follows: 

Making further substitutions: 

I, = ai (x; + 2xi Si) 

so = mi (Xi + Si) 

Lo = C (Jai + JRi). 

Equations (14') and (15') are written in the following form: 

So Yo + (Jo + Lo) 8, + 8 pj{u> = o .  

( 1 4") 

(1 5 " )  
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Equations (14") and (15") can be solved simultaneously f o r  eo and Yo. 

where 

I 

K 1 = I o + L o - - .  
MO 

Rewriting equation (1 0) 

I Substi tuting fo r  Yo and 8, i n  equation (18) from equations (16) 
and (17)  yields a s e t  of equations i n  matrix form which can be used t o  
determine the t o t a l  mode shapes, slopes of mode shapes, slopes of bend- 
ing mode shapes, and the na tura l  bending frequencies. 



The product of the row times the column matrices y ie lds  two 

square matrices which can be added to resu l t ing  i n  

o-w2[D 
. - -  

where 1 I) 1 is the dynamic matrix for a free-free beam experiencing 

bending vibrat ions.  

The procedure t o  be used i n  the development of the influence 
coef f ic ien t  matrices f o r  d i g i t a l  computation can be found i n  Appendix A. 

An i t e r a t i o n  procedure f o r  obtaining higher modes is given i n  
Appmdix C. 

Free-Free Torsion Equations 

A set of equations for determining tors ional  frequencies and mode 
shapes may be wr i t ten  s imi la r  to those f o r  f ree-free bending. 
general equation for the angle of twist T i ,  of any sect ion i is 

The 

m 

(i = 1, 2, ... n) 

1 

where 

is the na tura l  torsional frequency 

is the  tors ional  influence coeff ic ients ,  and RT 
i j  

Ji is the polar mass moment of i ne r t i a .  
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Assuming t h a t  the cant i lever  coef f ic ien ts  can be determined, n 
equations may be wr i t ten  in  matrix form as follows: 

Next, the clamped end of the beam is released similar t o  the 
f ree- f ree  bending case so t h a t  the angle of twis t ,  f ree-free,  may be 
wr i t ten  as the angle of twis t ,  can t i lever ,  plus  some angle of twis t ,  
To, r esu l t ing  from the releasing of the  clamped end. 

(23) TiF - - Tic + To. 

Solving for  Tic above and subs t i tu t ing  i n t o  equation (22) gives 

{ TiF } = { } *O + OJr" [ RTf ] { T i c  } 
For free-free v ibra t ions ,  the following equation holds: 

O r ,  i n  matrix notat ion,  

L Ji TiF = 0 .  

Multiplying equation (24) by [ Ji ] yie lds  
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solving for To and substituting into equation ( 2 4 )  gives 

where 

Jo = 1 Ji. 

Equation (28) in simplified form is 

{'.I?}= 9 [ [ 1' [ I ] ]  [ dT]{ 

where 

[ I ] is  the identity matrix, .and 

In final form 

{ } =  9 [ DT ] { } 
Equation (30) may be iterated on for the mode shapes and natural 
frequencies. 



. 111. CONCLUSIONS AND RECOMMENDATIONS 

Table I i l l u s t r a t e s  t ha t  the influence coef f ic ien t  method can be 
used with a reasonably small number of mass points  compared to  the 
Stodola method to  obtain accurate frequencies and mode shapes. 
of mode shapes can a l so  be obcained with t h i s  program, but were not 
included in  t h i s  report  ,since the mode shapes give an indicat ion of the 
accuracy one could expect for  the slopes. The accuracy of the mode 
shapes and frequencies is increased with an increase i n  the number of 
mass points. 
but  the fourth mode is sens i t ive  t o  mass point  changes from 10 t o  15. 

Slopes 

The f i r s t  three mode shapes do not change appreciably, 

Table I1 compares the .cant i lever ,  f ree-free bending, and free-  
f r e e  torsional frequencies for  the f i r s t  four modes of a typical 
space vehicle whose mass and s t i f f n e s s  charac te r i s t ics  a r e  shown i n  
Figures 13 and 14. The E1 used i n  the influence coef f ic ien t  method 
f o r  each s t a t ion  was determined by averaging three values taken a t  
1/4, 1/2, and 3 / 4  of the length of the mass segment. For E1 dis t r ibu-  
t ions tha t  vary rad ica l ly  over a par t icu lar  mass segment, i t  is recom- 
mended tha t  the reciprocal  of an average value of the 1 / E I  d i s t r ibu t ion  
be used for  the e f fec t ive  E I .  

Figures 1 through 12 compare the f i r s t  four normal modes fo r  the 
free-free bending, cant i lever  bending, and the free-free tors ion case 
a s  obtained by the two methods. 
f i r s t  three modes of the free-free bending case. The deviation i n  the 
fourth mode can possibly be explained by the f a c t  t ha t  fzwo extra  
"sweeping" processes were i n i t i a t e d  before t h i s  mode was obtained. 
This arose from the f a c t  t ha t  the E 1  of a sect ion of the nose was . 
small i n  comparison t o  the sect ion beginning a t  s t a t i o n  X = -25 
(Figure 13) .  
be cal led for a vehicle with an extremely f l ex ib l e  tower on the nose 
of the vehicle, were not included i n  t h i s  report  s ince the Stodola 
method did not indicate the i r  existence. Excellent agreement was 
obtained for the cant i lever  mode shapes (Figures 5 through 8). Tor- 
s ional  modes were in  good agreement through the second mode. 
deviation occurred i n  the th i rd  mode and a considerable deviation i n  
the fourth. A d i f f e ren t  method for  obtaining cant i lever  bending and 
tors ional  influence coeff ic ients  could possibly increase the accuracy 
of the program. The more d i f f i c u l t  var iab le  t o  evaluate properly for  
each s t a t ion  appears to  be the s t i f f n e s s  ( E I ) ;  therefore,  i t  i s  recom- 
mended that  various ways be t r i ed  to  determine the proper E l .  

Good agreement was obtained i n  the 

These intermediate modes or  "tower modes," as  they might 

A s l i g h t  

L ~- 
~ 
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Free-Free Natural 
Bending Frequencies (L/sec) 

wST - (145) MPTS. 

w I C  - (10) MPTS. 

w .  rc - (15) MPTS. 

w I C  - (20) MPTS. 

CI. 

CI. 

TABLE OF RESULTS I 

(Uniform Beam) 

1 2 

48.64 120.52 

48.40 118.15 

48.51 119.20 

48.56 119.58 

Modes 

~ % Variation 

ST. ---- I. C. (IO) 

ST. ---- I. C. (15) 

ST. ---- I. c. (20) 

1 2 3 4 

0.49 1.97 4.22 7.01 

0.27 1 :lo 2.45 4.14 

0.16 0.78 1.80 3.00 

3 

209.24 

200.42 

204.12 

205.52 

7 305.11 

283.72 

292.49 

295.971 

Subscripts L and R denote l e f t  and r i g h t  extremes of beam. 
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Natural Frequencies Rad/sec 

(cantilever) 

( free- f ree) 

(torsion) 

TABLE OF RESULTS 11 

- 

1 2 3 4 

2.37 8.25 18.41 32.93 

7.78 18.85 34.58 51.66 

36.41 59.15 86.20 117.65 

(Non-Uniform Beam) 

Natural Frequencies Rad/sec 

(cantilever) 

( free - f ree) 

(torsion) 

A 

1 2 3 4 

2.39 8.40 18.48 32.48 

7.95 18.78 33.93 50.90 

35.63 58.97 86.19 115.04 

1 

Influence Coefficient Method (20) P t s  Modes 

- 
) 100 1 2 3 4 

IC - % Var. = (1 

(cant i lever)  0.84 1.82 0.38 -1.36 

(free-free) 2.19 -0.42 -1.88 -1.47 
I 

(torsion) -2.14 -0.30 0 .oo -2.22 
b 
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APPENDIX A 

Cantilever Influence Coefficients for  Bending 

Consider a beam divided i n t o  n equal segments of length 2 1  with 
the mass concentrated a t  the  geometric center .  
f o r  a u n i t  force may be wr i t ten  as follows: 

Influence coef f ic ien ts  

Using the moment area method, the def lec t ion  a t  s t a t i o n  (1) due t o  
a force  a t  (1) is 

FB a= 
= 3E0 Io 

The centroid of the  area under the M/EI diagram with respec t  t o  s t a t i o n  
(1) is 

2a gB = 3' 

It then follows t h a t  

L 
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ZB = - CFB (e + xi - X,) for  i > 2. 
l2 ip 

m e  following general expressions now can be writ ten: 

(Xi - X i ) 2  
for  j > 2 E. Ii 

1 
2 5 2 8  JJ 2 

i=1. 

and 

P P= - f o r  j > 2 
J 

i=l 

MB 
The influence coef f ic ien ts  C r j  denote the def lect ion of s t a t i o n  i due 
t o  a u n i t  moment a t  j ,  which produces a bending def lect ion and may be 
wr i t ten  as follows: 

a2 + J2* ) . e = (6El I1 3E0 Io 

M 
E1 The dis tance from the centroid of the - diagram t o  s t a t i o n  (1) is 
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For i > 1 then 

and for  j > 1 

P = P 
i j  ii 

fo r  i < j .  

The influence coef f ic ien ts  eFB a r e  symmetrical with respect  to  
( ref .  1); therefore,  the if ollowing expressions may be wri t ten:  

and 
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. 

The ro t a t ion  of s t a t i o n  i due t o  a u n i t  moment a t  which produces 
bending, y ie lds  another set of influence coef f ic ien ts  e f f s  . Again using 
the moment area method of reference 3, i j  

and 

e t  = ejj MB 
f o r  i > j 

eij MB = eji MB for  i < j. 

Next, shear def lect ions due t o  a u n i t  force w i l l  be considered. 
These coef f ic ien ts  can be determined by multiplying two matrices con- 
ta ining the  shear area a t  each s ta t ion ,  Asi,  arranged i n  the follawlng 
manner : 

0 0 ...... 0 0 - 
JTl 

1 
0 0 1 1 - - -  ...... q1 K- s1 K s2 

- - - -  I. 0 0 . .  1 1 1 

‘ / A s l % % 2 %  c . . . . .  . . . . . .  
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[ < ; ] = a  G 

Fl 1 

The influence coeff ic ients  8:; may be obtained by se t t i ng  up a 
diagonal matrix of the l /As i  values and multiplying by a t r iangular  
matrix as follows: 

110 0 1 1  ......I .t 

\ I l i  i I I  

. 

To determine the influence coef f ic ien ts  qs, a diagonal matrix of l / A s i  
i s  multiplied times the transpose of the adove t r iangular  matrix. . 

It is assumed tha t  G is constant and therefore can be factored 
out of each of the matrices used t o  obtain qi, and C y ; .  
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APPENDIX B 
Torsional Influence Coefficients 

The tors ional  influence coeff ic ients  given in ' t h i s  appendix a r e  T wri t ten  f 0 r . a  cant i lever  beam. 
due to  a un i t  torque applied a t  j. 

R i j  denotes the ro t a t ion  of s t a t ion  i 

0 

X, 
RT = 
11 Go zpo 

and 

T Xp - XI R T = R  + 
22 11 G Ip, 

Therefore, 

T 
R~ = R~~ fo r  i < j 
i j  

and 

rn m 

= R:. f o r  i> j. J. 

Rij J J  
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APPENDIX C 

Obtaining Higher Modes 

After the f i r s t  mode shape and bending frequency ' have been 
determined, the higher modes and frequencies can be obtained as 
follows: 

1. I t e r a t e  on the dynamic matrix from the f ront  and obtain 
a charac te r i s t ic  row. 

D, is  the original dynamic matrix. 

2. Normalize to  the rth unknown 

1' p, p, ?, ... 1 ..... 
r r  

3. Form a square matrix with zeros for  a l l  elements in  every 
Ki 
Kr row except the rth. 

called the  E, matrix. 

In se r t  the - normalized row here. This w i l l  be 

4. To obtain the new dynamic matrix D2 for  obtaining the second 
.mode, perform the following operations: 

where [ I ] is an ident i ty  matrix. 

This same procedure is used t o  obtain the next  mode, e tc .  

I 

. 
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APPENDIX D 

Shear Deflections Due t o  a Pure Moment 

The equation for  displacements due t o  shear deformation is 

where s is the shear d i s t r ibu t ion  due t o  a u n i t  load and $ is a cor- 
rec t ion  fac tor  used t o  obtain the proper shear area (AS = A). For 

a u n i t  shear load, S = 1, the above equation can be wr i t ten  as follows: 
3 

Next, consider a beam with a un i t  moment applied a t  some point  j: 

n n n  n n  
v v w  w v  

i 

Since - * s and M’ dx = s dx, dx 

But M‘ = 00 a t  X = Xj. 
f i r s t  considering M 
following figure.  

However, the above in tegra l  can be evaluated by 
a s  a u n i t  f i n i t e  impulse function as shown in  the  



34 

M’ (X) 

1 M’(h, X - Xj) = - 
= 0 

when X < X < X .  + h 
h j J 

when X. + h < X < Xj 
J 

.-. l / h  

n n  
w w  

I\ n n n 

+” chw L .“““.ix 
Substituting the impulse function for M’ i n  Fs and l e t t i n g  h + 0, we 
obtain i j  

= 0 for X < Xj . 
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